

Abstract

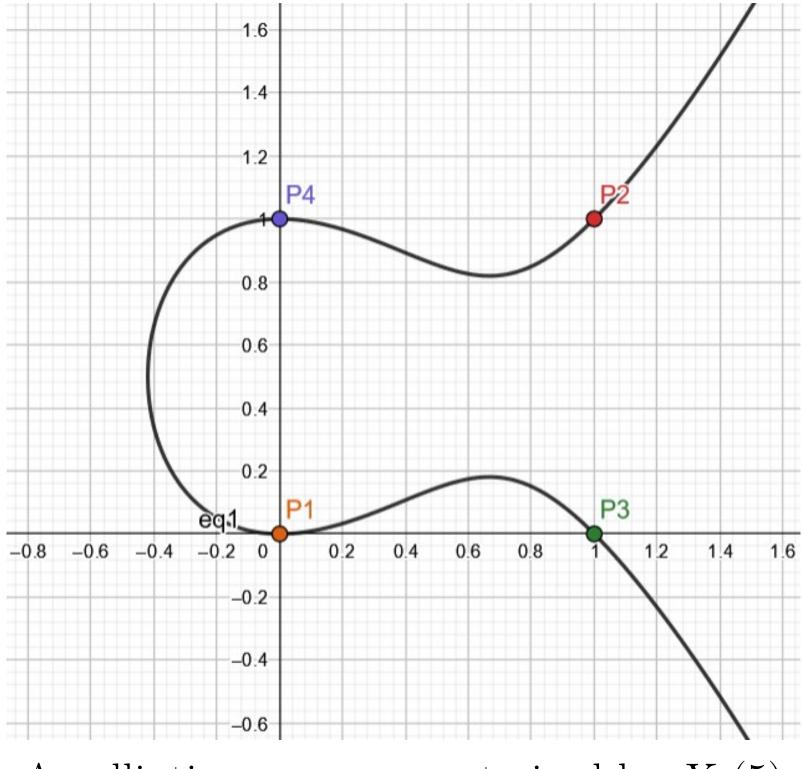
For a positive integer N, we say that an elliptic curve E admits an N-isogeny if E has a cyclic subgroup of order N. Such elliptic curves are parametrizable, and by studying the explicit equations corresponding to the modular curve $X_0(N)$, we prove results about the minimal discriminants of elliptic curves with a non-trivial isogeny over the rational numbers.

Elliptic Curves

An **Elliptic Curve** over \mathbb{Q} is the set of complex numbers (x, y) that satisfy the equation

$$y^2 = x^3 + Ax + B$$

together with a point "at infinity" denoted \mathcal{O} , where $A, B \in \mathbb{Q}$ satisfy $4A^3 + 27B^2 \neq 0$. There is a natural group structure of the points on an elliptic curve where \mathcal{O} is the identity.



An elliptic curve parameterized by $X_1(5)$

More generally, elliptic curves can be written in their Weierstrass form:

 $E: y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6},$

where $a_i \in \mathbb{Q}$. If instead each $a_i \in \mathbb{Z}$, we say E is in integral Weierstrass form.

Minimal Discriminants of Elliptic Curves with Non-Trivial Isogeny

Alyssa Brasse¹

Nevin Etter² Gustavo Flores³ Drew Miller⁴ Summer Soller⁵

¹Hunter College ²Washington and Lee University ³Carleton College ⁴University of California Santa Barbara ⁵University of Utah

Elliptic Curves Cont.

Associated to an elliptic curve are the quantities c_4 , c_6 , and Δ which can be easily computed from the coefficients of the elliptic curve. We have the identity

$$\Delta = \frac{c_4^3 - c_6^2}{1728}$$

We call Δ the **discriminant** of the elliptic curve. The following is a useful theorem for determining whether there exists an integral Weierstrass model with given c_4 and c_6 :

Kraus' Theorem

Let $\alpha, \beta, \gamma \in \mathbb{Z}$ with $\gamma \neq 0$ be such that $\alpha^3 - \beta^2 =$ 1728 γ . There exists an integral Weierstrass model with $c_4 = \alpha$ and $c_6 = \beta$ if and only if • $\nu_2(\beta) \neq 2$, and • $\beta \equiv -1 \pmod{4}$ if β is odd, • $\nu_2(\alpha) \ge 4$ and $\beta \equiv 0$ or 8 (mod 32) if β is even

Isomorphisms of Elliptic Curves

An elliptic curve E' is \mathbb{Q} -isomorphic to E if it arises via an **admissible change of variables**

 $x \mapsto u^2 x + r \quad y \mapsto u^3 y + u^2 s x + w,$

where $u, r, s, w \in \mathbb{Q}$ and $u \neq 0$. If c'_4 , c'_6 , and Δ' are the quantities associated with E', then

 $c'_4 = u^{-4}c_4, \quad c'_6 = u^{-6}c_6, \quad \Delta' = u^{-12}\Delta.$

Observe that if E_1 is isomorphic to E_2 via a change of variables in which $u = u_1$ and E_2 is isomorphic to E_3 via a change of variables with $u = u_2$, then the discriminant of E_3 can be written as

$$\Delta_3 = u_2^{-12} \Delta_2 = u_2^{-12} u_1^{-12} \Delta_1.$$

In other words, \mathbb{Q} -isomorphisms affect the quantities associated to an elliptic curve multiplicatively.

We say the elliptic curve E defined by

is a **global minimal model** if each $a_i \in \mathbb{Z}$ and its discriminant Δ is minimal over all curves \mathbb{Q} isomorphic to E. That is,

model is called the **minimal discriminant**. In general, it is not easy to compute the minimal discriminant of an elliptic curve. There are existing algorithms by Tate (1975), Laska (1982), and later Laska, Kraus, and Connell (1991).

An **isogeny** $\pi: E \to E'$ between elliptic curves is a nonzero surjective group homomorphism with finite kernel. If the kernel has size N, we say π is an Nisogeny. An isogeny $\pi: E \to E'$ can be written in the form

for some rational function f(x) and rational constant $c \neq 0.$

Let $n = 2, 3, \ldots, 10, 12, 13, 16, 18, 25$. Elliptic curves with non-trivial n-isogeny can be parameterized in terms of a family of *n*-isogenous, non-isomorphic curves $F_{n,k}(a, b, d)$ for some coprime a, b and some integers d and k. Using this parameterization, we aim to classify the minimal discriminants of each curve $F_{n,k}$ in terms of arithmetic conditions on the integers a, b, d. Doing so classifies the minimal discriminants of elliptic curves with an n-isogeny.

Minimal Discriminants

 $E: y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$

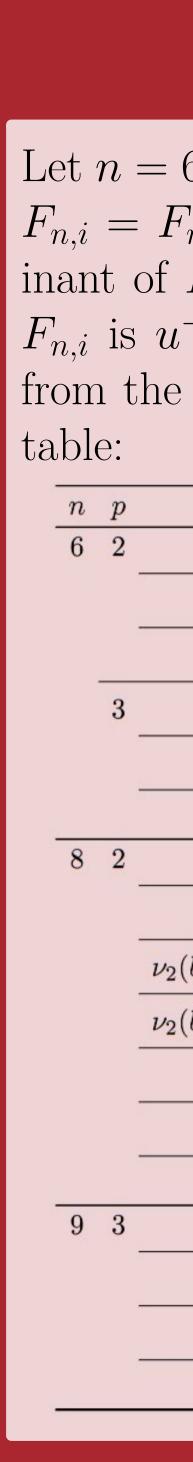
 $\Delta_E = \min\{|\Delta_{E'}| \in \mathbb{Z} : E' \text{ is } \mathbb{Q} \text{-isomorphic to } E.\}$

The discriminant associated with a global minimal

Isogenies

$$\pi(x, y) = \left(f(x), c\frac{\mathrm{d}}{\mathrm{d}x}f(x)\right)$$

Our Project



We are in the process of classifying the minimal discriminants of curves that admit an n-isogeny for the remaining values of n.

We would like to thank: • Pomona College for making PRiME 2021 possible • The NSA for funding this project (NSA) H98230-21-1-0015) • Dr. Edray Goins, Dr. Rachel Davis, and especially Dr. Alex Barrios for their guidance and expertise throughout this experience.

Main Theorem

Let n = 6, 8, or 9 and consider the elliptic curves $F_{n,i} = F_{n,i}(a, b, 1)$. Let $\Delta_{n,i}$ denote the discriminant of $F_{n,i}$. Then the minimal discriminant of $F_{n,i}$ is $u^{-12}\Delta_{n,i}$ where u is uniquely determined from the *p*-adic valuations given in the following

Condition on a, b	$\left(\nu_p(u_{n,i}) \right)_i$
$\nu_2(b) \le 1$	(1,0,1,2)
$\nu_2(b) = 2$	(2,0,2,2)
$ u_2(b) \ge 3 $	(3,1,3,3)
$\nu_3(b) = 0$	(0, 0, 0, 0)
$\nu_3(b) = 1$	(1, 1, 0, 0)
$\nu_3(b) \ge 2$	(2, 2, 1, 1)
$\nu_2(b) = 0$	(1, 0, 0, 0, 0, 1)
$\nu_2(b) = 1$	$\left(2,1,1,1,1,2 ight)$
$(b) = 2, \nu_2(a + \frac{b}{4}) = 1, \text{ and } \nu_2(a - \frac{b}{4}) = 2$	(4, 3, 4, 2, 2, 2)
$(b) = 2, \nu_2(a + \frac{b}{4}) = 1, \text{ and } \nu_2(a - \frac{b}{4}) \ge 3$	$\left(5,4,5,3,3,3 ight)$
$\nu_2(b) = 2$ and $\nu_2(a + \frac{b}{4}) = 2$	$\left(4,4,3,2,2,2 ight)$
$\nu_2(b) = 2 \text{ and } \nu_2(a + \frac{b}{4}) \ge 3$	$\left(5,5,4,3,3,3 ight)$
$\nu_2(b) \ge 3$	(3, 2, 2, 2, 3, 2)
$\nu_3(b) = 0$	(1, 0, 0)
$\nu_3(b) \ge 1 \text{ and } \nu_3(a - \frac{b}{3}) = 0$	(1, 1, 0)
$\nu_3(b) = 1$ and $\nu_3(a - \frac{b}{3}) = 1$	(2, 1, 0)
$\nu_3(b) = 1$ and $\nu_3(a - \frac{b}{3}) > 1$	(3, 2, 1)

Further Work

Acknowledgements